#include "user_driver.h" #include "Drv_adc.h" #include "yc11xx_bt_interface.h" #include "att.h" #include "core_cm0.h" #include "yc11xx_pwm.h" #include "user_driver.h" #include "Drv_adc.h" #include "yc11xx_gpio.h" #include "yc11xx_qspi.h" #include "yc11xx_gpio.h" #include "Drv_mic.h" #include #include #include "yc11xx_wdt.h" #include "u_main.h" volatile uint8_t ble_connected_state=0; //ble 连接状态 volatile uint8_t g_ir_recv_done_flag = 0x00;//解码成功标志 uint8_t g_ir_code_buffer[4] = {0x00};//红外解码值缓存 static volatile unsigned int sys_run_tickms=0; //从定时器初始化运行到当前的毫秒 static volatile unsigned int sys_run_ticks=0; //从定时器初始化运行到当前的秒 static volatile unsigned short ms_cnt_temp = 0; static unsigned int system_time_get_run_tickms(void) { return sys_run_tickms; } static unsigned int system_time_get_run_ticks(void) { return sys_run_ticks; } void system_time_run_tick_cnt(void) { if(++ms_cnt_temp>999) { ms_cnt_temp=0; sys_run_ticks++; } sys_run_tickms++; } void PWM_Config(GPIO_NUM gpio, PWM_ChxTypeDef pwm_channel, uint16_t pcnt,uint16_t ncnt, PWM_ClkdivDef clk_div,START_TypeDef LEVEL, PWM_SwitchDef SWITCH); void PWM_Config(GPIO_NUM gpio, PWM_ChxTypeDef pwm_channel, uint16_t pcnt,uint16_t ncnt, PWM_ClkdivDef clk_div,START_TypeDef LEVEL, PWM_SwitchDef SWITCH) { PWM_InitTypeDef PWM_InitStruct; PWM_InitStruct.pwm_gpio = gpio; PWM_InitStruct.PWM_Channel = pwm_channel; PWM_InitStruct.HighLevelPeriod = pcnt; PWM_InitStruct.LowLevelPeriod = ncnt; PWM_InitStruct.pwm_ctrl.clk_div = clk_div; PWM_InitStruct.pwm_ctrl.StartLevel = LEVEL; PWM_InitStruct.pwm_ctrl.pwm_switch = SWITCH; PWM_Init(&PWM_InitStruct); } uint8_t Hal_Timer_CheckTimerClock(uint32_t frequency) { uint8_t div; if(frequency >= HAL_MIN_48M_MIN_FREQUENCY && frequency <= HAL_MAX_48M_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_0; } else if(frequency >= HAL_MIN_24M_MIN_FREQUENCY && frequency <= HAL_MAX_24M_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_1; } else if(frequency >= HAL_MIN_12M_MIN_FREQUENCY && frequency <= HAL_MAX_12M_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_2; } else if(frequency >= HAL_MIN_6M_MIN_FREQUENCY && frequency <= HAL_MAX_6M_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_3; } else if(frequency >= HAL_MIN_3M_MIN_FREQUENCY && frequency <= HAL_MAX_3M_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_4; } else if(frequency >= HAL_MIN_1500K_MIN_FREQUENCY && frequency <= HAL_MAX_1500K_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_5; } else if(frequency >= HAL_MIN_750K_MIN_FREQUENCY && frequency <= HAL_MAX_750K_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_6; } else if(frequency >= HAL_MIN_375K_MIN_FREQUENCY && frequency <= HAL_MAX_375K_MAX_FREQUENCY) { div = FREQUENCY_DIVISION_7; } return div; } /** #define FREQUENCY_48M_1US 48 #define FREQUENCY_24M_1US 24 #define FREQUENCY_12M_1US 12 #define FREQUENCY_6M_1US 6 #define FREQUENCY_3M_1US 3 #define FREQUENCY_1500K_3US 2 #define FREQUENCY_750K_3US 4 #define FREQUENCY_375K_3US 8 */ uint16_t Hal_Timer_GetOneCycleCount(uint32_t frequency,uint8_t clock) { uint32_t count; switch (clock) { case FREQUENCY_DIVISION_0: //48M count = 48000000 / frequency; break; case FREQUENCY_DIVISION_1: count = 24000000 / frequency; break; case FREQUENCY_DIVISION_2: count = 12000000 / frequency; break; case FREQUENCY_DIVISION_3: count = 6000000 / frequency; break; case FREQUENCY_DIVISION_4: count = 3000000 / frequency; break; case FREQUENCY_DIVISION_5: // count = 2000000 / (3*frequency); count = 1500000 / (frequency); break; case FREQUENCY_DIVISION_6: count = 750000 / (frequency); break; case FREQUENCY_DIVISION_7: count = 375000 / (frequency); break; default: break; } return count; } void Hal_Set_OutPWM(GPIO_NUM gpio, PWM_ChxTypeDef pwm_channel,uint32_t frequecy,uint32_t percent) { if(percent>=100) { GPIO_SetOut(gpio,OUT_HIGH); } else if(percent==0) { GPIO_SetOut(gpio,OUT_LOW); } else { uint8_t divClk=0; uint32_t count=0;uint32_t pCnt=0,nCnt,temp=0; divClk = Hal_Timer_CheckTimerClock(frequecy*2); //分频数 temp = Hal_Timer_GetOneCycleCount(frequecy*2, divClk); //单个周期计数值 #ifdef DEBUG_PWM MyPrintf("DivClk=%x,temp=%x\r\n",divClk,temp); #endif pCnt = (uint32_t)((float)(temp * percent * 100)/10000.0); if(!(temp > pCnt))//error { #ifdef DEBUG_PWM MyPrintf("\r\nerror\r\n",pCnt,nCnt); #endif return; } nCnt = temp - pCnt; #ifdef DEBUG_PWM MyPrintf("\r\ntemp=%d,pCnt=%d,nCnt=%d\r\n",temp,pCnt,nCnt); #endif PWM_Config(gpio,pwm_channel,pCnt,nCnt,divClk,OutputLow,PWM_ENABLE);//no分频 } } /*以下处理ADC相关代码*/ void ADC_Configuration(void); /** * @brief ADC initialization function. * @param None * @retval None */ void ADC_Configuration(void) { GPIO_SetGpioMultFunction(ADC_GET_GPIOx,GPCFG_NO_IE); ADC_InitTypeDef ADCInitStruct; ADCInitStruct.ADC_Channel = ADC_CHANNEL_5; ADCInitStruct.ADC_Mode = ADC_GPIO; #ifdef hvin_test ADCInitStruct.ADC_Mode = ADC_HVIN; #endif ADC_Init(&ADCInitStruct); #ifdef DEBUG_ADC // printf("adc_init suc, gpio mode test 0-1.2V!\n"); MyPrintf("testing channel %d\n",ADCInitStruct.ADC_Channel); #endif } extern MIC_CUR_VARIABLE sMicCurVariable; /* * @method Audio_sampling_init * @brief mic adc init * @retval None */ void Audio_sampling_init() { DRV_Mic_Init(); //DRV_Mic_Enable(); DRV_Mic_Disable(); } /* * @method Audio_get_buffer_len * @brief Get adc dma buf unread data length. * @retval None */ int Audio_get_buffer_len() { int audioWPtr = HREADW(CORE_ADCD_ADDR) ; int audioRPtr = TO_16BIT_ADDR(sMicCurVariable.mReadPtr) ; int audioBufferLen = (int)(sMicCurVariable.mEndPtr - sMicCurVariable.mReadBufPtr); if(audioRPtr <= audioWPtr) { return (audioWPtr - audioRPtr); } else { return (audioBufferLen - (audioRPtr - audioWPtr)); } } /* * @method audio_dma_handle * @brief read mic adc data for adc_dma_buf, and send mic adc data by uart. * @retval None */ static short * testPtr=NULL; static short Audio_Buffer[ENCODE_INPUT_LEN]={0}; static unsigned int AudioCntIdx=0; static short mic_audio_val=0; short GetAudio_MedianFilter(short *pBuff,uint8_t len,bool flags,uint8_t number) //中位值滤波 中位值平均滤波 N为采样次数,取奇数 Flag:中位值平均滤波使能 { uint16_t temp=0; short audio_tempval=0; unsigned long sum=0; uint8_t count,i,j,z; for(j=0;j pBuff[i+1] ) { temp =pBuff[i]; pBuff[i] = pBuff[i+1]; pBuff[i+1] = temp; } } } if(flags) { for(count=number;count<(len-number);count++)//中位再求平均 flags控制 { sum+=pBuff[count]; } audio_tempval=(sum/(len-(number*2))); sum=0; } else { audio_tempval= pBuff[(len-1)/2]; //中位值 } return audio_tempval; } void audio_dma_handle(void) { short audioVal=0; int indexL=0; if (sMicCurVariable.mMicEnable == MIC_DISABLE) return; int audioWPtr = HREADW(CORE_ADCD_ADDR) ; int bufferLen = Audio_get_buffer_len(); if (bufferLen != 0 && bufferLen >= ENCODE_INPUT_LEN) { testPtr = (short *)sMicCurVariable.mReadPtr; for( indexL = 0; indexL < (ENCODE_INPUT_LEN>>1); indexL++) { // audioVal = *(testPtr+ indexL)/100; //串口显示波形用 // printfsend((uint8_t*)&audioVal,1); audioVal = *(testPtr+ indexL); Audio_Buffer[indexL]=abs(audioVal); } mic_audio_val=GetAudio_MedianFilter(Audio_Buffer,(ENCODE_INPUT_LEN>>1),0,15)/2; //取40组数据的中位值 /2限制幅度 sMicCurVariable.mReadPtr += ENCODE_INPUT_LEN; if (sMicCurVariable.mReadPtr == sMicCurVariable.mEndPtr) sMicCurVariable.mReadPtr = sMicCurVariable.mReadBufPtr; } } void delay_us(uint32_t num)//需要调整参数 { uint32_t i,j; for(i=0; i>=1; // } // return ret; // #endif // temp = (((temp & 0xaa) >> 1) | ((temp & 0x55) << 1)); // temp = (((temp & 0xcc) >> 2) | ((temp & 0x33) << 2)); // return ((temp >> 4) | (temp << 4)); //} void Bt_NecCallBack(uint8_t len,uint8_t *dataPtr) { int i=0; switch(*dataPtr) { case NEC_CMD: #ifdef DEBUG_DRV_APP u_ble_data_send(dataPtr,len); #endif if(len==5) { for( i=0;i0) { return (uint16_t)adc_value; } return 0; } uint8_t get_mic_audio_value(void)//获取检测到mic的adc值 { return mic_audio_val; } void u_ble_data_send(uint8_t *send_data, uint8_t send_len) //实现发送ble数据包功能函数 { if(ble_connected_state==1) Bt_SndBleData(BLE_SEND_HANDLE,send_data,send_len); } //实现对flash的操作 api 保存配置数据用 void flash_erase_sector(uint32_t address) { QSPI_SectorEraseFlash(address); } void flash_read_data (uint8_t *buffer, uint32_t address, uint32_t len) { QSPI_ReadFlashData(address,len,buffer); } void flash_write_data(uint8_t *buffer, uint32_t address, uint32_t len) { QSPI_WriteFlashData(address,len,buffer); } void user_set_pwmout_dutycycle(uint8_t channel,uint32_t duty) //设置3路 pwm输出占空比 { switch(channel) { case RED_PWM_CHANNEL: Hal_Set_OutPWM(PWM_CHANCE_R,PWM_CHANNEL_0,20000,duty);//R break; case GREEN_PWM_CHANNEL: Hal_Set_OutPWM(PWM_CHANCE_G,PWM_CHANNEL_2,20000,duty); break; case BLUE_PWM_CHANNEL: Hal_Set_OutPWM(PWM_CHANCE_B,PWM_CHANNEL_1,20000,duty);//B break; } } sys_time_handle_t sys_time_handle={ .init = NULL, .run_tickcnt = system_time_run_tick_cnt, .get_run_ticks = system_time_get_run_ticks, .get_run_tickms=system_time_get_run_tickms } ; //系统时间句柄