#include #include #include "esp_log.h" #include "public.h" #include "sdkconfig.h" #include #include #define SHA1_KEY_IOPAD_SIZE (64) #define SHA1_DIGEST_SIZE (20) /* Implementation that should never be optimized out by the compiler */ static void utils_sha1_zeroize( void *v, uint32_t n ) { volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0; } /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) \ { \ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ | ( (uint32_t) (b)[(i) + 1] << 16 ) \ | ( (uint32_t) (b)[(i) + 2] << 8 ) \ | ( (uint32_t) (b)[(i) + 3] ); \ } #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif void utils_sha1_init(iot_sha1_context *ctx) { memset(ctx, 0, sizeof(iot_sha1_context)); } void utils_sha1_free(iot_sha1_context *ctx) { if (ctx == NULL) { return; } utils_sha1_zeroize(ctx, sizeof(iot_sha1_context)); } void utils_sha1_clone(iot_sha1_context *dst, const iot_sha1_context *src) { *dst = *src; } /* * SHA-1 context setup */ void utils_sha1_starts(iot_sha1_context *ctx) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xC3D2E1F0; } void utils_sha1_process(iot_sha1_context *ctx, const unsigned char data[64]) { uint32_t temp, W[16], A, B, C, D, E; GET_UINT32_BE( W[ 0], data, 0 ); GET_UINT32_BE( W[ 1], data, 4 ); GET_UINT32_BE( W[ 2], data, 8 ); GET_UINT32_BE( W[ 3], data, 12 ); GET_UINT32_BE( W[ 4], data, 16 ); GET_UINT32_BE( W[ 5], data, 20 ); GET_UINT32_BE( W[ 6], data, 24 ); GET_UINT32_BE( W[ 7], data, 28 ); GET_UINT32_BE( W[ 8], data, 32 ); GET_UINT32_BE( W[ 9], data, 36 ); GET_UINT32_BE( W[10], data, 40 ); GET_UINT32_BE( W[11], data, 44 ); GET_UINT32_BE( W[12], data, 48 ); GET_UINT32_BE( W[13], data, 52 ); GET_UINT32_BE( W[14], data, 56 ); GET_UINT32_BE( W[15], data, 60 ); #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) #define R(t) \ ( \ temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \ W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \ ( W[t & 0x0F] = S(temp,1) ) \ ) #define P(a,b,c,d,e,x) \ { \ e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; #define F(x,y,z) (z ^ (x & (y ^ z))) #define K 0x5A827999 P( A, B, C, D, E, W[0] ); P( E, A, B, C, D, W[1] ); P( D, E, A, B, C, W[2] ); P( C, D, E, A, B, W[3] ); P( B, C, D, E, A, W[4] ); P( A, B, C, D, E, W[5] ); P( E, A, B, C, D, W[6] ); P( D, E, A, B, C, W[7] ); P( C, D, E, A, B, W[8] ); P( B, C, D, E, A, W[9] ); P( A, B, C, D, E, W[10] ); P( E, A, B, C, D, W[11] ); P( D, E, A, B, C, W[12] ); P( C, D, E, A, B, W[13] ); P( B, C, D, E, A, W[14] ); P( A, B, C, D, E, W[15] ); P( E, A, B, C, D, R(16) ); P( D, E, A, B, C, R(17) ); P( C, D, E, A, B, R(18) ); P( B, C, D, E, A, R(19) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0x6ED9EBA1 P( A, B, C, D, E, R(20) ); P( E, A, B, C, D, R(21) ); P( D, E, A, B, C, R(22) ); P( C, D, E, A, B, R(23) ); P( B, C, D, E, A, R(24) ); P( A, B, C, D, E, R(25) ); P( E, A, B, C, D, R(26) ); P( D, E, A, B, C, R(27) ); P( C, D, E, A, B, R(28) ); P( B, C, D, E, A, R(29) ); P( A, B, C, D, E, R(30) ); P( E, A, B, C, D, R(31) ); P( D, E, A, B, C, R(32) ); P( C, D, E, A, B, R(33) ); P( B, C, D, E, A, R(34) ); P( A, B, C, D, E, R(35) ); P( E, A, B, C, D, R(36) ); P( D, E, A, B, C, R(37) ); P( C, D, E, A, B, R(38) ); P( B, C, D, E, A, R(39) ); #undef K #undef F #define F(x,y,z) ((x & y) | (z & (x | y))) #define K 0x8F1BBCDC P( A, B, C, D, E, R(40) ); P( E, A, B, C, D, R(41) ); P( D, E, A, B, C, R(42) ); P( C, D, E, A, B, R(43) ); P( B, C, D, E, A, R(44) ); P( A, B, C, D, E, R(45) ); P( E, A, B, C, D, R(46) ); P( D, E, A, B, C, R(47) ); P( C, D, E, A, B, R(48) ); P( B, C, D, E, A, R(49) ); P( A, B, C, D, E, R(50) ); P( E, A, B, C, D, R(51) ); P( D, E, A, B, C, R(52) ); P( C, D, E, A, B, R(53) ); P( B, C, D, E, A, R(54) ); P( A, B, C, D, E, R(55) ); P( E, A, B, C, D, R(56) ); P( D, E, A, B, C, R(57) ); P( C, D, E, A, B, R(58) ); P( B, C, D, E, A, R(59) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0xCA62C1D6 P( A, B, C, D, E, R(60) ); P( E, A, B, C, D, R(61) ); P( D, E, A, B, C, R(62) ); P( C, D, E, A, B, R(63) ); P( B, C, D, E, A, R(64) ); P( A, B, C, D, E, R(65) ); P( E, A, B, C, D, R(66) ); P( D, E, A, B, C, R(67) ); P( C, D, E, A, B, R(68) ); P( B, C, D, E, A, R(69) ); P( A, B, C, D, E, R(70) ); P( E, A, B, C, D, R(71) ); P( D, E, A, B, C, R(72) ); P( C, D, E, A, B, R(73) ); P( B, C, D, E, A, R(74) ); P( A, B, C, D, E, R(75) ); P( E, A, B, C, D, R(76) ); P( D, E, A, B, C, R(77) ); P( C, D, E, A, B, R(78) ); P( B, C, D, E, A, R(79) ); #undef K #undef F ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } /* * SHA-1 process buffer */ void utils_sha1_update(iot_sha1_context *ctx, const unsigned char *input, uint32_t ilen) { uint32_t fill; uint32_t left; if( ilen == 0 ) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if( ctx->total[0] < (uint32_t) ilen ) ctx->total[1]++; if( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); utils_sha1_process( ctx, ctx->buffer ); input += fill; ilen -= fill; left = 0; } while( ilen >= 64 ) { utils_sha1_process( ctx, input ); input += 64; ilen -= 64; } if( ilen > 0 ) memcpy( (void *) (ctx->buffer + left), input, ilen ); } static const unsigned char sha1_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * SHA-1 final digest */ void utils_sha1_finish(iot_sha1_context *ctx, unsigned char output[20]) { uint32_t last, padn; uint32_t high, low; unsigned char msglen[8]; high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_UINT32_BE( high, msglen, 0 ); PUT_UINT32_BE( low, msglen, 4 ); last = ctx->total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); utils_sha1_update( ctx, sha1_padding, padn ); utils_sha1_update( ctx, msglen, 8 ); PUT_UINT32_BE( ctx->state[0], output, 0 ); PUT_UINT32_BE( ctx->state[1], output, 4 ); PUT_UINT32_BE( ctx->state[2], output, 8 ); PUT_UINT32_BE( ctx->state[3], output, 12 ); PUT_UINT32_BE( ctx->state[4], output, 16 ); } /* * output = SHA-1( input buffer ) */ void utils_sha1(const unsigned char *input, uint32_t ilen, unsigned char output[20]) { iot_sha1_context ctx; utils_sha1_init(&ctx); utils_sha1_starts(&ctx); utils_sha1_update(&ctx, input, ilen); utils_sha1_finish(&ctx, output); utils_sha1_free(&ctx); } static int8_t utils_hb2hex(uint8_t hb) { hb = hb & 0xF; return (int8_t)(hb < 10 ? '0' + hb : hb - 10 + 'a'); } void utils_hmac_sha1(const char *msg, int msg_len, char *digest, const char *key, int key_len) { iot_sha1_context context; unsigned char k_ipad[SHA1_KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */ unsigned char k_opad[SHA1_KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */ unsigned char out[SHA1_DIGEST_SIZE]; int i; if ((NULL == msg) || (NULL == digest) || (NULL == key)) { return; } if (key_len > SHA1_KEY_IOPAD_SIZE) { return; } /* start out by storing key in pads */ memset(k_ipad, 0, sizeof(k_ipad)); memset(k_opad, 0, sizeof(k_opad)); memcpy(k_ipad, key, key_len); memcpy(k_opad, key, key_len); /* XOR key with ipad and opad values */ for (i = 0; i < SHA1_KEY_IOPAD_SIZE; i++) { k_ipad[i] ^= 0x36; k_opad[i] ^= 0x5c; } /* perform inner SHA */ utils_sha1_init(&context); /* init context for 1st pass */ utils_sha1_starts(&context); /* setup context for 1st pass */ utils_sha1_update(&context, k_ipad, SHA1_KEY_IOPAD_SIZE); /* start with inner pad */ utils_sha1_update(&context, (unsigned char *) msg, msg_len); /* then text of datagram */ utils_sha1_finish(&context, out); /* finish up 1st pass */ /* perform outer SHA */ utils_sha1_init(&context); /* init context for 2nd pass */ utils_sha1_starts(&context); /* setup context for 2nd pass */ utils_sha1_update(&context, k_opad, SHA1_KEY_IOPAD_SIZE); /* start with outer pad */ utils_sha1_update(&context, out, SHA1_DIGEST_SIZE); /* then results of 1st hash */ utils_sha1_finish(&context, out); /* finish up 2nd pass */ for (i = 0; i < SHA1_DIGEST_SIZE; ++i) { digest[i * 2] = utils_hb2hex(out[i] >> 4); digest[i * 2 + 1] = utils_hb2hex(out[i]); } } void utils_hmac_sha1_hex(const char *msg, int msg_len, char *digest, const char *key, int key_len) { iot_sha1_context context; unsigned char k_ipad[SHA1_KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */ unsigned char k_opad[SHA1_KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */ unsigned char out[SHA1_DIGEST_SIZE]; int i; if ((NULL == msg) || (NULL == digest) || (NULL == key)) { return; } if (key_len > SHA1_KEY_IOPAD_SIZE) { return; } /* start out by storing key in pads */ memset(k_ipad, 0, sizeof(k_ipad)); memset(k_opad, 0, sizeof(k_opad)); memcpy(k_ipad, key, key_len); memcpy(k_opad, key, key_len); /* XOR key with ipad and opad values */ for (i = 0; i < SHA1_KEY_IOPAD_SIZE; i++) { k_ipad[i] ^= 0x36; k_opad[i] ^= 0x5c; } /* perform inner SHA */ utils_sha1_init(&context); /* init context for 1st pass */ utils_sha1_starts(&context); /* setup context for 1st pass */ utils_sha1_update(&context, k_ipad, SHA1_KEY_IOPAD_SIZE); /* start with inner pad */ utils_sha1_update(&context, (unsigned char *) msg, msg_len); /* then text of datagram */ utils_sha1_finish(&context, out); /* finish up 1st pass */ /* perform outer SHA */ utils_sha1_init(&context); /* init context for 2nd pass */ utils_sha1_starts(&context); /* setup context for 2nd pass */ utils_sha1_update(&context, k_opad, SHA1_KEY_IOPAD_SIZE); /* start with outer pad */ utils_sha1_update(&context, out, SHA1_DIGEST_SIZE); /* then results of 1st hash */ utils_sha1_finish(&context, out); /* finish up 2nd pass */ memcpy(digest, out, SHA1_DIGEST_SIZE); }