jpge.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. // jpge.cpp - C++ class for JPEG compression.
  2. // Public domain, Rich Geldreich <richgel99@gmail.com>
  3. // v1.01, Dec. 18, 2010 - Initial release
  4. // v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.)
  5. // v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc.
  6. // Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03).
  7. // v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug.
  8. // Code tweaks to fix VS2008 static code analysis warnings (all looked harmless).
  9. // Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02.
  10. #include "jpge.h"
  11. #include <stdlib.h>
  12. #include <string.h>
  13. #include <malloc.h>
  14. #define JPGE_MAX(a,b) (((a)>(b))?(a):(b))
  15. #define JPGE_MIN(a,b) (((a)<(b))?(a):(b))
  16. namespace jpge {
  17. static inline void *jpge_malloc(size_t nSize) { return malloc(nSize); }
  18. static inline void jpge_free(void *p) { free(p); }
  19. // Various JPEG enums and tables.
  20. enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 };
  21. enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 };
  22. static const uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 };
  23. static const int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 };
  24. static const int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 };
  25. static const uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 };
  26. static const uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
  27. static const uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d };
  28. static const uint8 s_ac_lum_val[AC_LUM_CODES] = {
  29. 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,
  30. 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
  31. 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
  32. 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,
  33. 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
  34. 0xf9,0xfa
  35. };
  36. static const uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 };
  37. static const uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
  38. static const uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };
  39. static const uint8 s_ac_chroma_val[AC_CHROMA_CODES] = {
  40. 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,
  41. 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,
  42. 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
  43. 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,
  44. 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
  45. 0xf9,0xfa
  46. };
  47. const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329;
  48. static int32 m_last_quality = 0;
  49. static int32 m_quantization_tables[2][64];
  50. static bool m_huff_initialized = false;
  51. static uint m_huff_codes[4][256];
  52. static uint8 m_huff_code_sizes[4][256];
  53. static uint8 m_huff_bits[4][17];
  54. static uint8 m_huff_val[4][256];
  55. static inline uint8 clamp(int i) {
  56. if (i < 0) {
  57. i = 0;
  58. } else if (i > 255){
  59. i = 255;
  60. }
  61. return static_cast<uint8>(i);
  62. }
  63. static void RGB_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels) {
  64. for ( ; num_pixels; pDst += 3, pSrc += 3, num_pixels--) {
  65. const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
  66. pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
  67. pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
  68. pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
  69. }
  70. }
  71. static void RGB_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels) {
  72. for ( ; num_pixels; pDst++, pSrc += 3, num_pixels--) {
  73. pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
  74. }
  75. }
  76. static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) {
  77. for( ; num_pixels; pDst += 3, pSrc++, num_pixels--) {
  78. pDst[0] = pSrc[0];
  79. pDst[1] = 128;
  80. pDst[2] = 128;
  81. }
  82. }
  83. // Forward DCT - DCT derived from jfdctint.
  84. enum { CONST_BITS = 13, ROW_BITS = 2 };
  85. #define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n))
  86. #define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c))
  87. #define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \
  88. int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \
  89. int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \
  90. int32 u1 = DCT_MUL(t12 + t13, 4433); \
  91. s2 = u1 + DCT_MUL(t13, 6270); \
  92. s6 = u1 + DCT_MUL(t12, -15137); \
  93. u1 = t4 + t7; \
  94. int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \
  95. int32 z5 = DCT_MUL(u3 + u4, 9633); \
  96. t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \
  97. t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \
  98. u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \
  99. u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \
  100. u3 += z5; u4 += z5; \
  101. s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3;
  102. static void DCT2D(int32 *p) {
  103. int32 c, *q = p;
  104. for (c = 7; c >= 0; c--, q += 8) {
  105. int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7];
  106. DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
  107. q[0] = s0 << ROW_BITS; q[1] = DCT_DESCALE(s1, CONST_BITS-ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS-ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS-ROW_BITS);
  108. q[4] = s4 << ROW_BITS; q[5] = DCT_DESCALE(s5, CONST_BITS-ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS-ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS-ROW_BITS);
  109. }
  110. for (q = p, c = 7; c >= 0; c--, q++) {
  111. int32 s0 = q[0*8], s1 = q[1*8], s2 = q[2*8], s3 = q[3*8], s4 = q[4*8], s5 = q[5*8], s6 = q[6*8], s7 = q[7*8];
  112. DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
  113. q[0*8] = DCT_DESCALE(s0, ROW_BITS+3); q[1*8] = DCT_DESCALE(s1, CONST_BITS+ROW_BITS+3); q[2*8] = DCT_DESCALE(s2, CONST_BITS+ROW_BITS+3); q[3*8] = DCT_DESCALE(s3, CONST_BITS+ROW_BITS+3);
  114. q[4*8] = DCT_DESCALE(s4, ROW_BITS+3); q[5*8] = DCT_DESCALE(s5, CONST_BITS+ROW_BITS+3); q[6*8] = DCT_DESCALE(s6, CONST_BITS+ROW_BITS+3); q[7*8] = DCT_DESCALE(s7, CONST_BITS+ROW_BITS+3);
  115. }
  116. }
  117. // Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays.
  118. static void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val)
  119. {
  120. int i, l, last_p, si;
  121. static uint8 huff_size[257];
  122. static uint huff_code[257];
  123. uint code;
  124. int p = 0;
  125. for (l = 1; l <= 16; l++) {
  126. for (i = 1; i <= bits[l]; i++) {
  127. huff_size[p++] = (char)l;
  128. }
  129. }
  130. huff_size[p] = 0;
  131. last_p = p; // write sentinel
  132. code = 0; si = huff_size[0]; p = 0;
  133. while (huff_size[p]) {
  134. while (huff_size[p] == si) {
  135. huff_code[p++] = code++;
  136. }
  137. code <<= 1;
  138. si++;
  139. }
  140. memset(codes, 0, sizeof(codes[0])*256);
  141. memset(code_sizes, 0, sizeof(code_sizes[0])*256);
  142. for (p = 0; p < last_p; p++) {
  143. codes[val[p]] = huff_code[p];
  144. code_sizes[val[p]] = huff_size[p];
  145. }
  146. }
  147. void jpeg_encoder::flush_output_buffer()
  148. {
  149. if (m_out_buf_left != JPGE_OUT_BUF_SIZE) {
  150. m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left);
  151. }
  152. m_pOut_buf = m_out_buf;
  153. m_out_buf_left = JPGE_OUT_BUF_SIZE;
  154. }
  155. void jpeg_encoder::emit_byte(uint8 i)
  156. {
  157. *m_pOut_buf++ = i;
  158. if (--m_out_buf_left == 0) {
  159. flush_output_buffer();
  160. }
  161. }
  162. void jpeg_encoder::put_bits(uint bits, uint len)
  163. {
  164. uint8 c = 0;
  165. m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len)));
  166. while (m_bits_in >= 8) {
  167. c = (uint8)((m_bit_buffer >> 16) & 0xFF);
  168. emit_byte(c);
  169. if (c == 0xFF) {
  170. emit_byte(0);
  171. }
  172. m_bit_buffer <<= 8;
  173. m_bits_in -= 8;
  174. }
  175. }
  176. void jpeg_encoder::emit_word(uint i)
  177. {
  178. emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF));
  179. }
  180. // JPEG marker generation.
  181. void jpeg_encoder::emit_marker(int marker)
  182. {
  183. emit_byte(uint8(0xFF)); emit_byte(uint8(marker));
  184. }
  185. // Emit JFIF marker
  186. void jpeg_encoder::emit_jfif_app0()
  187. {
  188. emit_marker(M_APP0);
  189. emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1);
  190. emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */
  191. emit_byte(0);
  192. emit_byte(1); /* Major version */
  193. emit_byte(1); /* Minor version */
  194. emit_byte(0); /* Density unit */
  195. emit_word(1);
  196. emit_word(1);
  197. emit_byte(0); /* No thumbnail image */
  198. emit_byte(0);
  199. }
  200. // Emit quantization tables
  201. void jpeg_encoder::emit_dqt()
  202. {
  203. for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++)
  204. {
  205. emit_marker(M_DQT);
  206. emit_word(64 + 1 + 2);
  207. emit_byte(static_cast<uint8>(i));
  208. for (int j = 0; j < 64; j++)
  209. emit_byte(static_cast<uint8>(m_quantization_tables[i][j]));
  210. }
  211. }
  212. // Emit start of frame marker
  213. void jpeg_encoder::emit_sof()
  214. {
  215. emit_marker(M_SOF0); /* baseline */
  216. emit_word(3 * m_num_components + 2 + 5 + 1);
  217. emit_byte(8); /* precision */
  218. emit_word(m_image_y);
  219. emit_word(m_image_x);
  220. emit_byte(m_num_components);
  221. for (int i = 0; i < m_num_components; i++)
  222. {
  223. emit_byte(static_cast<uint8>(i + 1)); /* component ID */
  224. emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */
  225. emit_byte(i > 0); /* quant. table num */
  226. }
  227. }
  228. // Emit Huffman table.
  229. void jpeg_encoder::emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag)
  230. {
  231. emit_marker(M_DHT);
  232. int length = 0;
  233. for (int i = 1; i <= 16; i++)
  234. length += bits[i];
  235. emit_word(length + 2 + 1 + 16);
  236. emit_byte(static_cast<uint8>(index + (ac_flag << 4)));
  237. for (int i = 1; i <= 16; i++)
  238. emit_byte(bits[i]);
  239. for (int i = 0; i < length; i++)
  240. emit_byte(val[i]);
  241. }
  242. // Emit all Huffman tables.
  243. void jpeg_encoder::emit_dhts()
  244. {
  245. emit_dht(m_huff_bits[0+0], m_huff_val[0+0], 0, false);
  246. emit_dht(m_huff_bits[2+0], m_huff_val[2+0], 0, true);
  247. if (m_num_components == 3) {
  248. emit_dht(m_huff_bits[0+1], m_huff_val[0+1], 1, false);
  249. emit_dht(m_huff_bits[2+1], m_huff_val[2+1], 1, true);
  250. }
  251. }
  252. // emit start of scan
  253. void jpeg_encoder::emit_sos()
  254. {
  255. emit_marker(M_SOS);
  256. emit_word(2 * m_num_components + 2 + 1 + 3);
  257. emit_byte(m_num_components);
  258. for (int i = 0; i < m_num_components; i++)
  259. {
  260. emit_byte(static_cast<uint8>(i + 1));
  261. if (i == 0)
  262. emit_byte((0 << 4) + 0);
  263. else
  264. emit_byte((1 << 4) + 1);
  265. }
  266. emit_byte(0); /* spectral selection */
  267. emit_byte(63);
  268. emit_byte(0);
  269. }
  270. void jpeg_encoder::load_block_8_8_grey(int x)
  271. {
  272. uint8 *pSrc;
  273. sample_array_t *pDst = m_sample_array;
  274. x <<= 3;
  275. for (int i = 0; i < 8; i++, pDst += 8)
  276. {
  277. pSrc = m_mcu_lines[i] + x;
  278. pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128;
  279. pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128;
  280. }
  281. }
  282. void jpeg_encoder::load_block_8_8(int x, int y, int c)
  283. {
  284. uint8 *pSrc;
  285. sample_array_t *pDst = m_sample_array;
  286. x = (x * (8 * 3)) + c;
  287. y <<= 3;
  288. for (int i = 0; i < 8; i++, pDst += 8)
  289. {
  290. pSrc = m_mcu_lines[y + i] + x;
  291. pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128;
  292. pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128;
  293. }
  294. }
  295. void jpeg_encoder::load_block_16_8(int x, int c)
  296. {
  297. uint8 *pSrc1, *pSrc2;
  298. sample_array_t *pDst = m_sample_array;
  299. x = (x * (16 * 3)) + c;
  300. int a = 0, b = 2;
  301. for (int i = 0; i < 16; i += 2, pDst += 8)
  302. {
  303. pSrc1 = m_mcu_lines[i + 0] + x;
  304. pSrc2 = m_mcu_lines[i + 1] + x;
  305. pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3] + pSrc2[ 0 * 3] + pSrc2[ 1 * 3] + a) >> 2) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3] + pSrc2[ 2 * 3] + pSrc2[ 3 * 3] + b) >> 2) - 128;
  306. pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3] + pSrc2[ 4 * 3] + pSrc2[ 5 * 3] + a) >> 2) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3] + pSrc2[ 6 * 3] + pSrc2[ 7 * 3] + b) >> 2) - 128;
  307. pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3] + pSrc2[ 8 * 3] + pSrc2[ 9 * 3] + a) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + b) >> 2) - 128;
  308. pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + a) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + b) >> 2) - 128;
  309. int temp = a; a = b; b = temp;
  310. }
  311. }
  312. void jpeg_encoder::load_block_16_8_8(int x, int c)
  313. {
  314. uint8 *pSrc1;
  315. sample_array_t *pDst = m_sample_array;
  316. x = (x * (16 * 3)) + c;
  317. for (int i = 0; i < 8; i++, pDst += 8)
  318. {
  319. pSrc1 = m_mcu_lines[i + 0] + x;
  320. pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3]) >> 1) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3]) >> 1) - 128;
  321. pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3]) >> 1) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3]) >> 1) - 128;
  322. pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3]) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3]) >> 1) - 128;
  323. pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3]) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3]) >> 1) - 128;
  324. }
  325. }
  326. void jpeg_encoder::load_quantized_coefficients(int component_num)
  327. {
  328. int32 *q = m_quantization_tables[component_num > 0];
  329. int16 *pDst = m_coefficient_array;
  330. for (int i = 0; i < 64; i++)
  331. {
  332. sample_array_t j = m_sample_array[s_zag[i]];
  333. if (j < 0)
  334. {
  335. if ((j = -j + (*q >> 1)) < *q)
  336. *pDst++ = 0;
  337. else
  338. *pDst++ = static_cast<int16>(-(j / *q));
  339. }
  340. else
  341. {
  342. if ((j = j + (*q >> 1)) < *q)
  343. *pDst++ = 0;
  344. else
  345. *pDst++ = static_cast<int16>((j / *q));
  346. }
  347. q++;
  348. }
  349. }
  350. void jpeg_encoder::code_coefficients_pass_two(int component_num)
  351. {
  352. int i, j, run_len, nbits, temp1, temp2;
  353. int16 *pSrc = m_coefficient_array;
  354. uint *codes[2];
  355. uint8 *code_sizes[2];
  356. if (component_num == 0)
  357. {
  358. codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0];
  359. code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0];
  360. }
  361. else
  362. {
  363. codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1];
  364. code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1];
  365. }
  366. temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num];
  367. m_last_dc_val[component_num] = pSrc[0];
  368. if (temp1 < 0)
  369. {
  370. temp1 = -temp1; temp2--;
  371. }
  372. nbits = 0;
  373. while (temp1)
  374. {
  375. nbits++; temp1 >>= 1;
  376. }
  377. put_bits(codes[0][nbits], code_sizes[0][nbits]);
  378. if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits);
  379. for (run_len = 0, i = 1; i < 64; i++)
  380. {
  381. if ((temp1 = m_coefficient_array[i]) == 0)
  382. run_len++;
  383. else
  384. {
  385. while (run_len >= 16)
  386. {
  387. put_bits(codes[1][0xF0], code_sizes[1][0xF0]);
  388. run_len -= 16;
  389. }
  390. if ((temp2 = temp1) < 0)
  391. {
  392. temp1 = -temp1;
  393. temp2--;
  394. }
  395. nbits = 1;
  396. while (temp1 >>= 1)
  397. nbits++;
  398. j = (run_len << 4) + nbits;
  399. put_bits(codes[1][j], code_sizes[1][j]);
  400. put_bits(temp2 & ((1 << nbits) - 1), nbits);
  401. run_len = 0;
  402. }
  403. }
  404. if (run_len)
  405. put_bits(codes[1][0], code_sizes[1][0]);
  406. }
  407. void jpeg_encoder::code_block(int component_num)
  408. {
  409. DCT2D(m_sample_array);
  410. load_quantized_coefficients(component_num);
  411. code_coefficients_pass_two(component_num);
  412. }
  413. void jpeg_encoder::process_mcu_row()
  414. {
  415. if (m_num_components == 1)
  416. {
  417. for (int i = 0; i < m_mcus_per_row; i++)
  418. {
  419. load_block_8_8_grey(i); code_block(0);
  420. }
  421. }
  422. else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
  423. {
  424. for (int i = 0; i < m_mcus_per_row; i++)
  425. {
  426. load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2);
  427. }
  428. }
  429. else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
  430. {
  431. for (int i = 0; i < m_mcus_per_row; i++)
  432. {
  433. load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
  434. load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2);
  435. }
  436. }
  437. else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
  438. {
  439. for (int i = 0; i < m_mcus_per_row; i++)
  440. {
  441. load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
  442. load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0);
  443. load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2);
  444. }
  445. }
  446. }
  447. void jpeg_encoder::load_mcu(const void *pSrc)
  448. {
  449. const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc);
  450. uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst
  451. if (m_num_components == 1) {
  452. if (m_image_bpp == 3)
  453. RGB_to_Y(pDst, Psrc, m_image_x);
  454. else
  455. memcpy(pDst, Psrc, m_image_x);
  456. } else {
  457. if (m_image_bpp == 3)
  458. RGB_to_YCC(pDst, Psrc, m_image_x);
  459. else
  460. Y_to_YCC(pDst, Psrc, m_image_x);
  461. }
  462. // Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16
  463. if (m_num_components == 1)
  464. memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x);
  465. else
  466. {
  467. const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2];
  468. uint8 *q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt;
  469. for (int i = m_image_x; i < m_image_x_mcu; i++)
  470. {
  471. *q++ = y; *q++ = cb; *q++ = cr;
  472. }
  473. }
  474. if (++m_mcu_y_ofs == m_mcu_y)
  475. {
  476. process_mcu_row();
  477. m_mcu_y_ofs = 0;
  478. }
  479. }
  480. // Quantization table generation.
  481. void jpeg_encoder::compute_quant_table(int32 *pDst, const int16 *pSrc)
  482. {
  483. int32 q;
  484. if (m_params.m_quality < 50)
  485. q = 5000 / m_params.m_quality;
  486. else
  487. q = 200 - m_params.m_quality * 2;
  488. for (int i = 0; i < 64; i++)
  489. {
  490. int32 j = *pSrc++; j = (j * q + 50L) / 100L;
  491. *pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255);
  492. }
  493. }
  494. // Higher-level methods.
  495. bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels)
  496. {
  497. m_num_components = 3;
  498. switch (m_params.m_subsampling)
  499. {
  500. case Y_ONLY:
  501. {
  502. m_num_components = 1;
  503. m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
  504. m_mcu_x = 8; m_mcu_y = 8;
  505. break;
  506. }
  507. case H1V1:
  508. {
  509. m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
  510. m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
  511. m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
  512. m_mcu_x = 8; m_mcu_y = 8;
  513. break;
  514. }
  515. case H2V1:
  516. {
  517. m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1;
  518. m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
  519. m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
  520. m_mcu_x = 16; m_mcu_y = 8;
  521. break;
  522. }
  523. case H2V2:
  524. {
  525. m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2;
  526. m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
  527. m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
  528. m_mcu_x = 16; m_mcu_y = 16;
  529. }
  530. }
  531. m_image_x = p_x_res; m_image_y = p_y_res;
  532. m_image_bpp = src_channels;
  533. m_image_bpl = m_image_x * src_channels;
  534. m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1));
  535. m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1));
  536. m_image_bpl_xlt = m_image_x * m_num_components;
  537. m_image_bpl_mcu = m_image_x_mcu * m_num_components;
  538. m_mcus_per_row = m_image_x_mcu / m_mcu_x;
  539. if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false;
  540. for (int i = 1; i < m_mcu_y; i++)
  541. m_mcu_lines[i] = m_mcu_lines[i-1] + m_image_bpl_mcu;
  542. if(m_last_quality != m_params.m_quality){
  543. m_last_quality = m_params.m_quality;
  544. compute_quant_table(m_quantization_tables[0], s_std_lum_quant);
  545. compute_quant_table(m_quantization_tables[1], s_std_croma_quant);
  546. }
  547. if(!m_huff_initialized){
  548. m_huff_initialized = true;
  549. memcpy(m_huff_bits[0+0], s_dc_lum_bits, 17); memcpy(m_huff_val[0+0], s_dc_lum_val, DC_LUM_CODES);
  550. memcpy(m_huff_bits[2+0], s_ac_lum_bits, 17); memcpy(m_huff_val[2+0], s_ac_lum_val, AC_LUM_CODES);
  551. memcpy(m_huff_bits[0+1], s_dc_chroma_bits, 17); memcpy(m_huff_val[0+1], s_dc_chroma_val, DC_CHROMA_CODES);
  552. memcpy(m_huff_bits[2+1], s_ac_chroma_bits, 17); memcpy(m_huff_val[2+1], s_ac_chroma_val, AC_CHROMA_CODES);
  553. compute_huffman_table(&m_huff_codes[0+0][0], &m_huff_code_sizes[0+0][0], m_huff_bits[0+0], m_huff_val[0+0]);
  554. compute_huffman_table(&m_huff_codes[2+0][0], &m_huff_code_sizes[2+0][0], m_huff_bits[2+0], m_huff_val[2+0]);
  555. compute_huffman_table(&m_huff_codes[0+1][0], &m_huff_code_sizes[0+1][0], m_huff_bits[0+1], m_huff_val[0+1]);
  556. compute_huffman_table(&m_huff_codes[2+1][0], &m_huff_code_sizes[2+1][0], m_huff_bits[2+1], m_huff_val[2+1]);
  557. }
  558. m_out_buf_left = JPGE_OUT_BUF_SIZE;
  559. m_pOut_buf = m_out_buf;
  560. m_bit_buffer = 0;
  561. m_bits_in = 0;
  562. m_mcu_y_ofs = 0;
  563. m_pass_num = 2;
  564. memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0]));
  565. // Emit all markers at beginning of image file.
  566. emit_marker(M_SOI);
  567. emit_jfif_app0();
  568. emit_dqt();
  569. emit_sof();
  570. emit_dhts();
  571. emit_sos();
  572. return m_all_stream_writes_succeeded;
  573. }
  574. bool jpeg_encoder::process_end_of_image()
  575. {
  576. if (m_mcu_y_ofs) {
  577. if (m_mcu_y_ofs < 16) { // check here just to shut up static analysis
  578. for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) {
  579. memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu);
  580. }
  581. }
  582. process_mcu_row();
  583. }
  584. put_bits(0x7F, 7);
  585. emit_marker(M_EOI);
  586. flush_output_buffer();
  587. m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(NULL, 0);
  588. m_pass_num++; // purposely bump up m_pass_num, for debugging
  589. return true;
  590. }
  591. void jpeg_encoder::clear()
  592. {
  593. m_mcu_lines[0] = NULL;
  594. m_pass_num = 0;
  595. m_all_stream_writes_succeeded = true;
  596. }
  597. jpeg_encoder::jpeg_encoder()
  598. {
  599. clear();
  600. }
  601. jpeg_encoder::~jpeg_encoder()
  602. {
  603. deinit();
  604. }
  605. bool jpeg_encoder::init(output_stream *pStream, int width, int height, int src_channels, const params &comp_params)
  606. {
  607. deinit();
  608. if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check())) return false;
  609. m_pStream = pStream;
  610. m_params = comp_params;
  611. return jpg_open(width, height, src_channels);
  612. }
  613. void jpeg_encoder::deinit()
  614. {
  615. jpge_free(m_mcu_lines[0]);
  616. clear();
  617. }
  618. bool jpeg_encoder::process_scanline(const void* pScanline)
  619. {
  620. if ((m_pass_num < 1) || (m_pass_num > 2)) {
  621. return false;
  622. }
  623. if (m_all_stream_writes_succeeded) {
  624. if (!pScanline) {
  625. if (!process_end_of_image()) {
  626. return false;
  627. }
  628. } else {
  629. load_mcu(pScanline);
  630. }
  631. }
  632. return m_all_stream_writes_succeeded;
  633. }
  634. } // namespace jpge