sb_exec.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /**************************************************************************************************
  2. Filename: sb_exec.c
  3. Revised: $Date: 2012-03-27 14:53:26 -0700 (Tue, 27 Mar 2012) $
  4. Revision: $Revision: 29910 $
  5. Description: Serial Bootloader Executive.
  6. Copyright 2009-2011 Texas Instruments Incorporated. All rights reserved.
  7. IMPORTANT: Your use of this Software is limited to those specific rights
  8. granted under the terms of a software license agreement between the user
  9. who downloaded the software, his/her employer (which must be your employer)
  10. and Texas Instruments Incorporated (the "License"). You may not use this
  11. Software unless you agree to abide by the terms of the License. The License
  12. limits your use, and you acknowledge, that the Software may not be modified,
  13. copied or distributed unless embedded on a Texas Instruments microcontroller
  14. or used solely and exclusively in conjunction with a Texas Instruments radio
  15. frequency transceiver, which is integrated into your product. Other than for
  16. the foregoing purpose, you may not use, reproduce, copy, prepare derivative
  17. works of, modify, distribute, perform, display or sell this Software and/or
  18. its documentation for any purpose.
  19. YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND DOCUMENTATION ARE
  20. PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
  21. INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, TITLE,
  22. NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
  23. TEXAS INSTRUMENTS OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER CONTRACT,
  24. NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER
  25. LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
  26. INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE
  27. OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT
  28. OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
  29. (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.
  30. Should you have any questions regarding your right to use this Software,
  31. contact Texas Instruments Incorporated at www.TI.com.
  32. **************************************************************************************************/
  33. /* ------------------------------------------------------------------------------------------------
  34. * Includes
  35. * ------------------------------------------------------------------------------------------------
  36. */
  37. #include "hal_board_cfg.h"
  38. #include "hal_flash.h"
  39. #include "hal_types.h"
  40. #include "sb_exec.h"
  41. #include "sb_main.h"
  42. /* ------------------------------------------------------------------------------------------------
  43. * Constants
  44. * ------------------------------------------------------------------------------------------------
  45. */
  46. #if !defined MT_SYS_OSAL_NV_READ_CERTIFICATE_DATA
  47. #define MT_SYS_OSAL_NV_READ_CERTIFICATE_DATA FALSE
  48. #endif
  49. /* ------------------------------------------------------------------------------------------------
  50. * Local Variables
  51. * ------------------------------------------------------------------------------------------------
  52. */
  53. static uint8 sbBuf[SB_BUF_SIZE], sbCmd1, sbCmd2, sbFcs, sbIdx, sbLen, sbSte;
  54. /* ------------------------------------------------------------------------------------------------
  55. * Local Functions
  56. * ------------------------------------------------------------------------------------------------
  57. */
  58. static uint8 sbCmnd(void);
  59. static void sbResp(uint8 rsp, uint8 len);
  60. static uint16 calcCRC(void);
  61. static uint16 runPoly(uint16 crc, uint8 val);
  62. /**************************************************************************************************
  63. * @fn sbExec
  64. *
  65. * @brief Boot Loader main executive processing.
  66. *
  67. * input parameters
  68. *
  69. * None.
  70. *
  71. * output parameters
  72. *
  73. * None.
  74. *
  75. * @return TRUE if sbCmnd() returns TRUE, indicating that an SB_ENABLE_CMD succeeded;
  76. * FALSE otherwise.
  77. **************************************************************************************************
  78. */
  79. uint8 sbExec(void)
  80. {
  81. uint8 ch, rtrn = FALSE;
  82. while (SB_RX(&ch))
  83. {
  84. sbBuf[sbSte + sbIdx] = ch;
  85. switch (sbSte)
  86. {
  87. case SB_SOF_STATE:
  88. if (SB_SOF == ch)
  89. {
  90. sbSte = SB_LEN_STATE;
  91. }
  92. break;
  93. case SB_LEN_STATE:
  94. sbFcs = 0;
  95. sbSte = ((sbLen = ch) >= SB_BUF_SIZE) ? SB_SOF_STATE : SB_CMD1_STATE;
  96. break;
  97. case SB_CMD1_STATE:
  98. sbCmd1 = ch;
  99. sbSte = SB_CMD2_STATE;
  100. break;
  101. case SB_CMD2_STATE:
  102. sbCmd2 = ch;
  103. sbSte = (sbLen) ? SB_DATA_STATE : SB_FCS_STATE;
  104. break;
  105. case SB_DATA_STATE:
  106. if (++sbIdx == sbLen)
  107. {
  108. sbSte = SB_FCS_STATE;
  109. }
  110. break;
  111. case SB_FCS_STATE:
  112. if ((sbFcs == ch) && (sbCmd1 == SB_RPC_SYS_BOOT))
  113. {
  114. rtrn = sbCmnd();
  115. }
  116. else
  117. {
  118. // TODO - RemoTI did not have here or on bad length - adding could cause > 1 SB_INVALID_FCS
  119. // for a single data packet which could put out of sync with PC for awhile or
  120. // infinte, depending on PC-side?
  121. // sbResp(SB_INVALID_FCS, 1);
  122. }
  123. sbSte = sbIdx = 0;
  124. break;
  125. default:
  126. break;
  127. }
  128. sbFcs ^= ch;
  129. }
  130. return rtrn;
  131. }
  132. /**************************************************************************************************
  133. * @fn sbImgValid
  134. *
  135. * @brief Check validity of the run-code image.
  136. *
  137. * input parameters
  138. *
  139. * None.
  140. *
  141. * output parameters
  142. *
  143. * None.
  144. *
  145. * @return TRUE or FALSE for image valid.
  146. **************************************************************************************************
  147. */
  148. uint8 sbImgValid(void)
  149. {
  150. uint16 crc[2];
  151. HalFlashRead(HAL_SB_CRC_ADDR / HAL_FLASH_PAGE_SIZE,
  152. HAL_SB_CRC_ADDR % HAL_FLASH_PAGE_SIZE,
  153. (uint8 *)crc, sizeof(crc));
  154. if ((crc[1] == 0x0000) || (crc[0] == 0x0000) || (crc[0] == 0xFFFF))
  155. {
  156. return FALSE;
  157. }
  158. else if ((crc[1] == 0xFFFF) && (crc[1] != crc[0]))
  159. {
  160. crc[0] = 0xFFFF; // Don't write any zero a second time.
  161. crc[1] = calcCRC();
  162. HalFlashWrite((HAL_SB_CRC_ADDR / HAL_FLASH_WORD_SIZE), (uint8 *)crc, 1);
  163. HalFlashRead( HAL_SB_CRC_ADDR / HAL_FLASH_PAGE_SIZE,
  164. HAL_SB_CRC_ADDR % HAL_FLASH_PAGE_SIZE,
  165. (uint8 *)crc, sizeof(crc));
  166. }
  167. return (crc[0] == crc[1]);
  168. }
  169. /**************************************************************************************************
  170. * @fn sbCmnd
  171. *
  172. * @brief Act on the SB command and received buffer.
  173. *
  174. * input parameters
  175. *
  176. * None.
  177. *
  178. * output parameters
  179. *
  180. * None.
  181. *
  182. * @return TRUE to indicate that the SB_ENABLE_CMD command was successful; FALSE otherwise.
  183. **************************************************************************************************
  184. */
  185. static uint8 sbCmnd(void)
  186. {
  187. uint16 tmp = BUILD_UINT16(sbBuf[SB_DATA_STATE], sbBuf[SB_DATA_STATE+1]) + SB_IMG_OSET;
  188. uint16 crc[2];
  189. uint8 len = 1;
  190. uint8 rsp = SB_SUCCESS;
  191. uint8 rtrn = FALSE;
  192. switch (sbCmd2)
  193. {
  194. case SB_HANDSHAKE_CMD:
  195. break;
  196. case SB_WRITE_CMD:
  197. if ((tmp % SB_WPG_SIZE) == 0)
  198. {
  199. HalFlashErase(tmp / SB_WPG_SIZE);
  200. }
  201. HalFlashWrite(tmp, sbBuf+SB_DATA_STATE+2, SB_RW_BUF_LEN / HAL_FLASH_WORD_SIZE);
  202. break;
  203. case SB_READ_CMD:
  204. #if !MT_SYS_OSAL_NV_READ_CERTIFICATE_DATA
  205. if ((tmp / (HAL_FLASH_PAGE_SIZE / 4)) >= HAL_NV_PAGE_BEG)
  206. {
  207. rsp = SB_FAILURE;
  208. break;
  209. }
  210. #endif
  211. HalFlashRead(tmp / (HAL_FLASH_PAGE_SIZE / 4),
  212. (tmp % (HAL_FLASH_PAGE_SIZE / 4)) << 2,
  213. sbBuf + SB_DATA_STATE + 3, SB_RW_BUF_LEN);
  214. sbBuf[SB_DATA_STATE+2] = sbBuf[SB_DATA_STATE+1];
  215. sbBuf[SB_DATA_STATE+1] = sbBuf[SB_DATA_STATE];
  216. len = SB_RW_BUF_LEN + 3;
  217. break;
  218. case SB_ENABLE_CMD:
  219. HalFlashRead(HAL_SB_CRC_ADDR / HAL_FLASH_PAGE_SIZE,
  220. HAL_SB_CRC_ADDR % HAL_FLASH_PAGE_SIZE,
  221. (uint8 *)crc, sizeof(crc));
  222. // Bootload master must have verified extra checks to be issuing the SB_ENABLE_CMD.
  223. //if ((crc[0] != crc[1]) && (crc[0] != 0xFFFF) && (crc[0] != 0x0000))
  224. if (crc[1] != crc[0])
  225. {
  226. crc[1] = crc[0];
  227. HalFlashWrite((HAL_SB_CRC_ADDR / HAL_FLASH_WORD_SIZE), (uint8 *)crc, 1);
  228. HalFlashRead( HAL_SB_CRC_ADDR / HAL_FLASH_PAGE_SIZE,
  229. HAL_SB_CRC_ADDR % HAL_FLASH_PAGE_SIZE,
  230. (uint8 *)crc, sizeof(crc));
  231. }
  232. // Bootload master must have verified extra checks to be issuing the SB_ENABLE_CMD.
  233. //if ((crc[0] == crc[1]) && (crc[0] != 0xFFFF) && (crc[0] != 0x0000))
  234. if (crc[0] == crc[1])
  235. {
  236. rtrn = TRUE;
  237. }
  238. else
  239. {
  240. rsp = SB_VALIDATE_FAILED;
  241. }
  242. break;
  243. default:
  244. break;
  245. }
  246. sbResp(rsp, len);
  247. return rtrn;
  248. }
  249. /**************************************************************************************************
  250. * @fn sbResp
  251. *
  252. * @brief Make the SB response.
  253. *
  254. * input parameters
  255. *
  256. * @param rsp - The byte code response to send.
  257. * @param len - The data length of the response.
  258. *
  259. * output parameters
  260. *
  261. * None.
  262. *
  263. * @return None.
  264. **************************************************************************************************
  265. */
  266. static void sbResp(uint8 rsp, uint8 len)
  267. {
  268. int8 idx;
  269. sbBuf[SB_CMD2_STATE] |= 0x80;
  270. sbBuf[SB_DATA_STATE] = rsp;
  271. sbBuf[SB_LEN_STATE] = len;
  272. rsp = len ^ SB_RPC_SYS_BOOT;
  273. len += SB_FCS_STATE-1;
  274. for (idx = SB_CMD2_STATE; idx < len; idx++)
  275. {
  276. rsp ^= sbBuf[idx];
  277. }
  278. sbBuf[idx++] = rsp;
  279. SB_TX(sbBuf, idx);
  280. }
  281. /**************************************************************************************************
  282. * @fn calcCRC
  283. *
  284. * @brief Run the CRC16 Polynomial calculation over the RC image.
  285. *
  286. * input parameters
  287. *
  288. * None.
  289. *
  290. * output parameters
  291. *
  292. * None.
  293. *
  294. * @return The CRC16 calculated.
  295. **************************************************************************************************
  296. */
  297. static uint16 calcCRC(void)
  298. {
  299. uint32 addr;
  300. uint16 crc = 0;
  301. // Run the CRC calculation over the active body of code.
  302. for (addr = HAL_SB_IMG_ADDR; addr < HAL_SB_IMG_ADDR + HAL_SB_IMG_SIZE; addr++)
  303. {
  304. if (addr == HAL_SB_CRC_ADDR)
  305. {
  306. addr += 3;
  307. }
  308. else
  309. {
  310. uint8 buf;
  311. HalFlashRead(addr / HAL_FLASH_PAGE_SIZE, addr % HAL_FLASH_PAGE_SIZE, &buf, 1);
  312. crc = runPoly(crc, buf);
  313. }
  314. }
  315. // IAR note explains that poly must be run with value zero for each byte of crc.
  316. crc = runPoly(crc, 0);
  317. crc = runPoly(crc, 0);
  318. return crc;
  319. }
  320. /**************************************************************************************************
  321. * @fn runPoly
  322. *
  323. * @brief Run the CRC16 Polynomial calculation over the byte parameter.
  324. *
  325. * input parameters
  326. *
  327. * @param crc - Running CRC calculated so far.
  328. * @param val - Value on which to run the CRC16.
  329. *
  330. * output parameters
  331. *
  332. * None.
  333. *
  334. * @return crc - Updated for the run.
  335. **************************************************************************************************
  336. */
  337. static uint16 runPoly(uint16 crc, uint8 val)
  338. {
  339. const uint16 poly = 0x1021;
  340. uint8 cnt;
  341. for (cnt = 0; cnt < 8; cnt++, val <<= 1)
  342. {
  343. uint8 msb = (crc & 0x8000) ? 1 : 0;
  344. crc <<= 1;
  345. if (val & 0x80) crc |= 0x0001;
  346. if (msb) crc ^= poly;
  347. }
  348. return crc;
  349. }
  350. /**************************************************************************************************
  351. */