ov2640.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. /*
  2. * This file is part of the OpenMV project.
  3. * Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
  4. * This work is licensed under the MIT license, see the file LICENSE for details.
  5. *
  6. * OV2640 driver.
  7. *
  8. */
  9. #include <stdint.h>
  10. #include <stdlib.h>
  11. #include <string.h>
  12. #include "sccb.h"
  13. #include "ov2640.h"
  14. #include "ov2640_regs.h"
  15. #include "ov2640_settings.h"
  16. #include "freertos/FreeRTOS.h"
  17. #include "freertos/task.h"
  18. #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
  19. #include "esp32-hal-log.h"
  20. #else
  21. #include "esp_log.h"
  22. static const char* TAG = "ov2640";
  23. #endif
  24. static volatile ov2640_bank_t reg_bank = BANK_MAX;
  25. static int set_bank(sensor_t *sensor, ov2640_bank_t bank)
  26. {
  27. int res = 0;
  28. if (bank != reg_bank) {
  29. reg_bank = bank;
  30. res = SCCB_Write(sensor->slv_addr, BANK_SEL, bank);
  31. }
  32. return res;
  33. }
  34. static int write_regs(sensor_t *sensor, const uint8_t (*regs)[2])
  35. {
  36. int i=0, res = 0;
  37. while (regs[i][0]) {
  38. if (regs[i][0] == BANK_SEL) {
  39. res = set_bank(sensor, regs[i][1]);
  40. } else {
  41. res = SCCB_Write(sensor->slv_addr, regs[i][0], regs[i][1]);
  42. }
  43. if (res) {
  44. return res;
  45. }
  46. i++;
  47. }
  48. return res;
  49. }
  50. static int write_reg(sensor_t *sensor, ov2640_bank_t bank, uint8_t reg, uint8_t value)
  51. {
  52. int ret = set_bank(sensor, bank);
  53. if(!ret) {
  54. ret = SCCB_Write(sensor->slv_addr, reg, value);
  55. }
  56. return ret;
  57. }
  58. static int set_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t offset, uint8_t mask, uint8_t value)
  59. {
  60. int ret = 0;
  61. uint8_t c_value, new_value;
  62. ret = set_bank(sensor, bank);
  63. if(ret) {
  64. return ret;
  65. }
  66. c_value = SCCB_Read(sensor->slv_addr, reg);
  67. new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
  68. ret = SCCB_Write(sensor->slv_addr, reg, new_value);
  69. return ret;
  70. }
  71. static int read_reg(sensor_t *sensor, ov2640_bank_t bank, uint8_t reg)
  72. {
  73. if(set_bank(sensor, bank)){
  74. return 0;
  75. }
  76. return SCCB_Read(sensor->slv_addr, reg);
  77. }
  78. static uint8_t get_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t offset, uint8_t mask)
  79. {
  80. return (read_reg(sensor, bank, reg) >> offset) & mask;
  81. }
  82. static int write_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t mask, int enable)
  83. {
  84. return set_reg_bits(sensor, bank, reg, 0, mask, enable?mask:0);
  85. }
  86. #define WRITE_REGS_OR_RETURN(regs) ret = write_regs(sensor, regs); if(ret){return ret;}
  87. #define WRITE_REG_OR_RETURN(bank, reg, val) ret = write_reg(sensor, bank, reg, val); if(ret){return ret;}
  88. #define SET_REG_BITS_OR_RETURN(bank, reg, offset, mask, val) ret = set_reg_bits(sensor, bank, reg, offset, mask, val); if(ret){return ret;}
  89. static int reset(sensor_t *sensor)
  90. {
  91. int ret = 0;
  92. WRITE_REG_OR_RETURN(BANK_SENSOR, COM7, COM7_SRST);
  93. vTaskDelay(10 / portTICK_PERIOD_MS);
  94. WRITE_REGS_OR_RETURN(ov2640_settings_cif);
  95. return ret;
  96. }
  97. static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
  98. {
  99. int ret = 0;
  100. sensor->pixformat = pixformat;
  101. switch (pixformat) {
  102. case PIXFORMAT_RGB565:
  103. case PIXFORMAT_RGB888:
  104. WRITE_REGS_OR_RETURN(ov2640_settings_rgb565);
  105. break;
  106. case PIXFORMAT_YUV422:
  107. case PIXFORMAT_GRAYSCALE:
  108. WRITE_REGS_OR_RETURN(ov2640_settings_yuv422);
  109. break;
  110. case PIXFORMAT_JPEG:
  111. WRITE_REGS_OR_RETURN(ov2640_settings_jpeg3);
  112. break;
  113. default:
  114. ret = -1;
  115. break;
  116. }
  117. if(!ret) {
  118. vTaskDelay(10 / portTICK_PERIOD_MS);
  119. }
  120. return ret;
  121. }
  122. //Functions are not needed currently
  123. #if 0
  124. //Set the sensor output window
  125. int set_output_window(sensor_t *sensor, uint16_t x, uint16_t y, uint16_t width, uint16_t height)
  126. {
  127. int ret = 0;
  128. uint16_t endx, endy;
  129. uint8_t com1, reg32;
  130. endy = y + height / 2;
  131. com1 = read_reg(sensor, BANK_SENSOR, COM1);
  132. WRITE_REG_OR_RETURN(BANK_SENSOR, COM1, (com1 & 0XF0) | (((endy & 0X03) << 2) | (y & 0X03)));
  133. WRITE_REG_OR_RETURN(BANK_SENSOR, VSTART, y >> 2);
  134. WRITE_REG_OR_RETURN(BANK_SENSOR, VSTOP, endy >> 2);
  135. endx = x + width / 2;
  136. reg32 = read_reg(sensor, BANK_SENSOR, REG32);
  137. WRITE_REG_OR_RETURN(BANK_SENSOR, REG32, (reg32 & 0XC0) | (((endx & 0X07) << 3) | (x & 0X07)));
  138. WRITE_REG_OR_RETURN(BANK_SENSOR, HSTART, x >> 3);
  139. WRITE_REG_OR_RETURN(BANK_SENSOR, HSTOP, endx >> 3);
  140. return ret;
  141. }
  142. // Set the image output size (final output resolution)
  143. int set_output_size(sensor_t *sensor, uint16_t width, uint16_t height)
  144. {
  145. int ret = 0;
  146. uint16_t h, w;
  147. if(width % 4) {
  148. return -1;
  149. }
  150. if(height % 4 ) {
  151. return -2;
  152. }
  153. w = width / 4;
  154. h = height / 4;
  155. //WRITE_REG_OR_RETURN(BANK_DSP, RESET, RESET_DVP);
  156. WRITE_REG_OR_RETURN(BANK_DSP, ZMOW, w & 0XFF);
  157. WRITE_REG_OR_RETURN(BANK_DSP, ZMOH, h & 0XFF);
  158. WRITE_REG_OR_RETURN(BANK_DSP, ZMHH, ((w >> 8) & 0X03) | ((h >> 6) & 0X04));
  159. //WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0X00);
  160. return ret;
  161. }
  162. //Set the image window size >= output size
  163. int set_window_size(sensor_t *sensor, uint16_t x, uint16_t y, uint16_t width, uint16_t height)
  164. {
  165. int ret = 0;
  166. uint16_t w, h;
  167. if(width % 4) {
  168. return -1;
  169. }
  170. if(height % 4) {
  171. return -2;
  172. }
  173. w = width / 4;
  174. h = height / 4;
  175. //WRITE_REG_OR_RETURN(BANK_DSP, RESET, RESET_DVP);
  176. WRITE_REG_OR_RETURN(BANK_DSP, HSIZE, w & 0XFF);
  177. WRITE_REG_OR_RETURN(BANK_DSP, VSIZE, h & 0XFF);
  178. WRITE_REG_OR_RETURN(BANK_DSP, XOFFL, x & 0XFF);
  179. WRITE_REG_OR_RETURN(BANK_DSP, YOFFL, y & 0XFF);
  180. WRITE_REG_OR_RETURN(BANK_DSP, VHYX, ((h >> 1) & 0X80) | ((y >> 4) & 0X70) | ((w >> 5) & 0X08) | ((x >> 8) & 0X07));
  181. WRITE_REG_OR_RETURN(BANK_DSP, TEST, (w >> 2) & 0X80);
  182. //WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0X00);
  183. return ret;
  184. }
  185. //Set the sensor resolution (UXGA, SVGA, CIF)
  186. int set_image_size(sensor_t *sensor, uint16_t width, uint16_t height)
  187. {
  188. int ret = 0;
  189. //WRITE_REG_OR_RETURN(BANK_DSP, RESET, RESET_DVP);
  190. WRITE_REG_OR_RETURN(BANK_DSP, HSIZE8, (width >> 3) & 0XFF);
  191. WRITE_REG_OR_RETURN(BANK_DSP, VSIZE8, (height >> 3) & 0XFF);
  192. WRITE_REG_OR_RETURN(BANK_DSP, SIZEL, ((width & 0X07) << 3) | ((width >> 4) & 0X80) | (height & 0X07));
  193. //WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0X00);
  194. return ret;
  195. }
  196. #endif
  197. static int set_framesize(sensor_t *sensor, framesize_t framesize)
  198. {
  199. int ret = 0;
  200. uint16_t w = resolution[framesize][0];
  201. uint16_t h = resolution[framesize][1];
  202. const uint8_t (*regs)[2];
  203. sensor->status.framesize = framesize;
  204. if (framesize <= FRAMESIZE_CIF) {
  205. regs = ov2640_settings_to_cif;
  206. } else if (framesize <= FRAMESIZE_SVGA) {
  207. regs = ov2640_settings_to_svga;
  208. } else {
  209. regs = ov2640_settings_to_uxga;
  210. }
  211. WRITE_REG_OR_RETURN(BANK_DSP, R_BYPASS, R_BYPASS_DSP_BYPAS);
  212. WRITE_REGS_OR_RETURN(regs);
  213. if (sensor->pixformat == PIXFORMAT_JPEG && sensor->xclk_freq_hz == 10000000) {
  214. if (framesize <= FRAMESIZE_CIF) {
  215. WRITE_REG_OR_RETURN(BANK_SENSOR, CLKRC, CLKRC_2X_CIF);
  216. } else if (framesize <= FRAMESIZE_SVGA) {
  217. WRITE_REG_OR_RETURN(BANK_SENSOR, CLKRC, CLKRC_2X_SVGA);
  218. } else {
  219. WRITE_REG_OR_RETURN(BANK_SENSOR, CLKRC, CLKRC_2X_UXGA);
  220. }
  221. }
  222. WRITE_REG_OR_RETURN(BANK_DSP, ZMOW, (w>>2)&0xFF); // OUTW[7:0] (real/4)
  223. WRITE_REG_OR_RETURN(BANK_DSP, ZMOH, (h>>2)&0xFF); // OUTH[7:0] (real/4)
  224. WRITE_REG_OR_RETURN(BANK_DSP, ZMHH, ((h>>8)&0x04)|((w>>10)&0x03)); // OUTH[8]/OUTW[9:8]
  225. WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0x00);
  226. WRITE_REG_OR_RETURN(BANK_DSP, R_BYPASS, R_BYPASS_DSP_EN);
  227. vTaskDelay(10 / portTICK_PERIOD_MS);
  228. //required when changing resolution
  229. set_pixformat(sensor, sensor->pixformat);
  230. return ret;
  231. }
  232. static int set_contrast(sensor_t *sensor, int level)
  233. {
  234. int ret=0;
  235. level += 3;
  236. if (level <= 0 || level > NUM_CONTRAST_LEVELS) {
  237. return -1;
  238. }
  239. sensor->status.contrast = level-3;
  240. for (int i=0; i<7; i++) {
  241. WRITE_REG_OR_RETURN(BANK_DSP, contrast_regs[0][i], contrast_regs[level][i]);
  242. }
  243. return ret;
  244. }
  245. static int set_brightness(sensor_t *sensor, int level)
  246. {
  247. int ret=0;
  248. level += 3;
  249. if (level <= 0 || level > NUM_BRIGHTNESS_LEVELS) {
  250. return -1;
  251. }
  252. sensor->status.brightness = level-3;
  253. for (int i=0; i<5; i++) {
  254. WRITE_REG_OR_RETURN(BANK_DSP, brightness_regs[0][i], brightness_regs[level][i]);
  255. }
  256. return ret;
  257. }
  258. static int set_saturation(sensor_t *sensor, int level)
  259. {
  260. int ret=0;
  261. level += 3;
  262. if (level <= 0 || level > NUM_SATURATION_LEVELS) {
  263. return -1;
  264. }
  265. sensor->status.saturation = level-3;
  266. for (int i=0; i<5; i++) {
  267. WRITE_REG_OR_RETURN(BANK_DSP, saturation_regs[0][i], saturation_regs[level][i]);
  268. }
  269. return ret;
  270. }
  271. static int set_special_effect(sensor_t *sensor, int effect)
  272. {
  273. int ret=0;
  274. effect++;
  275. if (effect <= 0 || effect > NUM_SPECIAL_EFFECTS) {
  276. return -1;
  277. }
  278. sensor->status.special_effect = effect-1;
  279. for (int i=0; i<5; i++) {
  280. WRITE_REG_OR_RETURN(BANK_DSP, special_effects_regs[0][i], special_effects_regs[effect][i]);
  281. }
  282. return ret;
  283. }
  284. static int set_wb_mode(sensor_t *sensor, int mode)
  285. {
  286. int ret=0;
  287. if (mode < 0 || mode > NUM_WB_MODES) {
  288. return -1;
  289. }
  290. sensor->status.wb_mode = mode;
  291. SET_REG_BITS_OR_RETURN(BANK_DSP, 0XC7, 6, 1, mode?1:0);
  292. if(mode) {
  293. for (int i=0; i<3; i++) {
  294. WRITE_REG_OR_RETURN(BANK_DSP, wb_modes_regs[0][i], wb_modes_regs[mode][i]);
  295. }
  296. }
  297. return ret;
  298. }
  299. static int set_ae_level(sensor_t *sensor, int level)
  300. {
  301. int ret=0;
  302. level += 3;
  303. if (level <= 0 || level > NUM_AE_LEVELS) {
  304. return -1;
  305. }
  306. sensor->status.ae_level = level-3;
  307. for (int i=0; i<3; i++) {
  308. WRITE_REG_OR_RETURN(BANK_SENSOR, ae_levels_regs[0][i], ae_levels_regs[level][i]);
  309. }
  310. return ret;
  311. }
  312. static int set_quality(sensor_t *sensor, int quality)
  313. {
  314. if(quality < 0) {
  315. quality = 0;
  316. } else if(quality > 63) {
  317. quality = 63;
  318. }
  319. sensor->status.quality = quality;
  320. return write_reg(sensor, BANK_DSP, QS, quality);
  321. }
  322. static int set_agc_gain(sensor_t *sensor, int gain)
  323. {
  324. if(gain < 0) {
  325. gain = 0;
  326. } else if(gain > 30) {
  327. gain = 30;
  328. }
  329. sensor->status.agc_gain = gain;
  330. return write_reg(sensor, BANK_SENSOR, GAIN, agc_gain_tbl[gain]);
  331. }
  332. static int set_gainceiling_sensor(sensor_t *sensor, gainceiling_t gainceiling)
  333. {
  334. sensor->status.gainceiling = gainceiling;
  335. //return write_reg(sensor, BANK_SENSOR, COM9, COM9_AGC_SET(gainceiling));
  336. return set_reg_bits(sensor, BANK_SENSOR, COM9, 5, 7, gainceiling);
  337. }
  338. static int set_aec_value(sensor_t *sensor, int value)
  339. {
  340. if(value < 0) {
  341. value = 0;
  342. } else if(value > 1200) {
  343. value = 1200;
  344. }
  345. sensor->status.aec_value = value;
  346. return set_reg_bits(sensor, BANK_SENSOR, REG04, 0, 3, value & 0x3)
  347. || write_reg(sensor, BANK_SENSOR, AEC, (value >> 2) & 0xFF)
  348. || set_reg_bits(sensor, BANK_SENSOR, REG45, 0, 0x3F, value >> 10);
  349. }
  350. static int set_aec2(sensor_t *sensor, int enable)
  351. {
  352. sensor->status.aec2 = enable;
  353. return set_reg_bits(sensor, BANK_DSP, CTRL0, 6, 1, enable?0:1);
  354. }
  355. static int set_colorbar(sensor_t *sensor, int enable)
  356. {
  357. sensor->status.colorbar = enable;
  358. return write_reg_bits(sensor, BANK_SENSOR, COM7, COM7_COLOR_BAR, enable?1:0);
  359. }
  360. static int set_agc_sensor(sensor_t *sensor, int enable)
  361. {
  362. sensor->status.agc = enable;
  363. return write_reg_bits(sensor, BANK_SENSOR, COM8, COM8_AGC_EN, enable?1:0);
  364. }
  365. static int set_aec_sensor(sensor_t *sensor, int enable)
  366. {
  367. sensor->status.aec = enable;
  368. return write_reg_bits(sensor, BANK_SENSOR, COM8, COM8_AEC_EN, enable?1:0);
  369. }
  370. static int set_hmirror_sensor(sensor_t *sensor, int enable)
  371. {
  372. sensor->status.hmirror = enable;
  373. return write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_HFLIP_IMG, enable?1:0);
  374. }
  375. static int set_vflip_sensor(sensor_t *sensor, int enable)
  376. {
  377. int ret = 0;
  378. sensor->status.vflip = enable;
  379. ret = write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_VREF_EN, enable?1:0);
  380. return ret & write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_VFLIP_IMG, enable?1:0);
  381. }
  382. static int set_raw_gma_dsp(sensor_t *sensor, int enable)
  383. {
  384. sensor->status.raw_gma = enable;
  385. return set_reg_bits(sensor, BANK_DSP, CTRL1, 5, 1, enable?1:0);
  386. }
  387. static int set_awb_dsp(sensor_t *sensor, int enable)
  388. {
  389. sensor->status.awb = enable;
  390. return set_reg_bits(sensor, BANK_DSP, CTRL1, 3, 1, enable?1:0);
  391. }
  392. static int set_awb_gain_dsp(sensor_t *sensor, int enable)
  393. {
  394. sensor->status.awb_gain = enable;
  395. return set_reg_bits(sensor, BANK_DSP, CTRL1, 2, 1, enable?1:0);
  396. }
  397. static int set_lenc_dsp(sensor_t *sensor, int enable)
  398. {
  399. sensor->status.lenc = enable;
  400. return set_reg_bits(sensor, BANK_DSP, CTRL1, 1, 1, enable?1:0);
  401. }
  402. static int set_dcw_dsp(sensor_t *sensor, int enable)
  403. {
  404. sensor->status.dcw = enable;
  405. return set_reg_bits(sensor, BANK_DSP, CTRL2, 5, 1, enable?1:0);
  406. }
  407. static int set_bpc_dsp(sensor_t *sensor, int enable)
  408. {
  409. sensor->status.bpc = enable;
  410. return set_reg_bits(sensor, BANK_DSP, CTRL3, 7, 1, enable?1:0);
  411. }
  412. static int set_wpc_dsp(sensor_t *sensor, int enable)
  413. {
  414. sensor->status.wpc = enable;
  415. return set_reg_bits(sensor, BANK_DSP, CTRL3, 6, 1, enable?1:0);
  416. }
  417. //unsupported
  418. static int set_sharpness(sensor_t *sensor, int level)
  419. {
  420. return -1;
  421. }
  422. static int set_denoise(sensor_t *sensor, int level)
  423. {
  424. return -1;
  425. }
  426. static int init_status(sensor_t *sensor){
  427. sensor->status.brightness = 0;
  428. sensor->status.contrast = 0;
  429. sensor->status.saturation = 0;
  430. sensor->status.ae_level = 0;
  431. sensor->status.special_effect = 0;
  432. sensor->status.wb_mode = 0;
  433. sensor->status.agc_gain = 30;
  434. int agc_gain = read_reg(sensor, BANK_SENSOR, GAIN);
  435. for (int i=0; i<30; i++){
  436. if(agc_gain >= agc_gain_tbl[i] && agc_gain < agc_gain_tbl[i+1]){
  437. sensor->status.agc_gain = i;
  438. break;
  439. }
  440. }
  441. sensor->status.aec_value = ((uint16_t)get_reg_bits(sensor, BANK_SENSOR, REG45, 0, 0x3F) << 10)
  442. | ((uint16_t)read_reg(sensor, BANK_SENSOR, AEC) << 2)
  443. | get_reg_bits(sensor, BANK_SENSOR, REG04, 0, 3);//0 - 1200
  444. sensor->status.quality = read_reg(sensor, BANK_DSP, QS);
  445. sensor->status.gainceiling = get_reg_bits(sensor, BANK_SENSOR, COM9, 5, 7);
  446. sensor->status.awb = get_reg_bits(sensor, BANK_DSP, CTRL1, 3, 1);
  447. sensor->status.awb_gain = get_reg_bits(sensor, BANK_DSP, CTRL1, 2, 1);
  448. sensor->status.aec = get_reg_bits(sensor, BANK_SENSOR, COM8, 0, 1);
  449. sensor->status.aec2 = get_reg_bits(sensor, BANK_DSP, CTRL0, 6, 1);
  450. sensor->status.agc = get_reg_bits(sensor, BANK_SENSOR, COM8, 2, 1);
  451. sensor->status.bpc = get_reg_bits(sensor, BANK_DSP, CTRL3, 7, 1);
  452. sensor->status.wpc = get_reg_bits(sensor, BANK_DSP, CTRL3, 6, 1);
  453. sensor->status.raw_gma = get_reg_bits(sensor, BANK_DSP, CTRL1, 5, 1);
  454. sensor->status.lenc = get_reg_bits(sensor, BANK_DSP, CTRL1, 1, 1);
  455. sensor->status.hmirror = get_reg_bits(sensor, BANK_SENSOR, REG04, 7, 1);
  456. sensor->status.vflip = get_reg_bits(sensor, BANK_SENSOR, REG04, 6, 1);
  457. sensor->status.dcw = get_reg_bits(sensor, BANK_DSP, CTRL2, 5, 1);
  458. sensor->status.colorbar = get_reg_bits(sensor, BANK_SENSOR, COM7, 1, 1);
  459. sensor->status.sharpness = 0;//not supported
  460. sensor->status.denoise = 0;
  461. return 0;
  462. }
  463. int ov2640_init(sensor_t *sensor)
  464. {
  465. sensor->reset = reset;
  466. sensor->init_status = init_status;
  467. sensor->set_pixformat = set_pixformat;
  468. sensor->set_framesize = set_framesize;
  469. sensor->set_contrast = set_contrast;
  470. sensor->set_brightness= set_brightness;
  471. sensor->set_saturation= set_saturation;
  472. sensor->set_quality = set_quality;
  473. sensor->set_colorbar = set_colorbar;
  474. sensor->set_gainceiling = set_gainceiling_sensor;
  475. sensor->set_gain_ctrl = set_agc_sensor;
  476. sensor->set_exposure_ctrl = set_aec_sensor;
  477. sensor->set_hmirror = set_hmirror_sensor;
  478. sensor->set_vflip = set_vflip_sensor;
  479. sensor->set_whitebal = set_awb_dsp;
  480. sensor->set_aec2 = set_aec2;
  481. sensor->set_aec_value = set_aec_value;
  482. sensor->set_special_effect = set_special_effect;
  483. sensor->set_wb_mode = set_wb_mode;
  484. sensor->set_ae_level = set_ae_level;
  485. sensor->set_dcw = set_dcw_dsp;
  486. sensor->set_bpc = set_bpc_dsp;
  487. sensor->set_wpc = set_wpc_dsp;
  488. sensor->set_awb_gain = set_awb_gain_dsp;
  489. sensor->set_agc_gain = set_agc_gain;
  490. sensor->set_raw_gma = set_raw_gma_dsp;
  491. sensor->set_lenc = set_lenc_dsp;
  492. //not supported
  493. sensor->set_sharpness = set_sharpness;
  494. sensor->set_denoise = set_denoise;
  495. ESP_LOGD(TAG, "OV2640 Attached");
  496. return 0;
  497. }