public.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. #include <stdlib.h>
  2. #include <sys/cdefs.h>
  3. #include "esp_log.h"
  4. #include "public.h"
  5. #include "sdkconfig.h"
  6. #include <stdlib.h>
  7. #include <string.h>
  8. #define SHA1_KEY_IOPAD_SIZE (64)
  9. #define SHA1_DIGEST_SIZE (20)
  10. /* Implementation that should never be optimized out by the compiler */
  11. static void utils_sha1_zeroize( void *v, uint32_t n ) {
  12. volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
  13. }
  14. /*
  15. * 32-bit integer manipulation macros (big endian)
  16. */
  17. #ifndef GET_UINT32_BE
  18. #define GET_UINT32_BE(n,b,i) \
  19. { \
  20. (n) = ( (uint32_t) (b)[(i) ] << 24 ) \
  21. | ( (uint32_t) (b)[(i) + 1] << 16 ) \
  22. | ( (uint32_t) (b)[(i) + 2] << 8 ) \
  23. | ( (uint32_t) (b)[(i) + 3] ); \
  24. }
  25. #endif
  26. #ifndef PUT_UINT32_BE
  27. #define PUT_UINT32_BE(n,b,i) \
  28. { \
  29. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  30. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  31. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  32. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  33. }
  34. #endif
  35. void utils_sha1_init(iot_sha1_context *ctx)
  36. {
  37. memset(ctx, 0, sizeof(iot_sha1_context));
  38. }
  39. void utils_sha1_free(iot_sha1_context *ctx)
  40. {
  41. if (ctx == NULL) {
  42. return;
  43. }
  44. utils_sha1_zeroize(ctx, sizeof(iot_sha1_context));
  45. }
  46. void utils_sha1_clone(iot_sha1_context *dst,
  47. const iot_sha1_context *src)
  48. {
  49. *dst = *src;
  50. }
  51. /*
  52. * SHA-1 context setup
  53. */
  54. void utils_sha1_starts(iot_sha1_context *ctx)
  55. {
  56. ctx->total[0] = 0;
  57. ctx->total[1] = 0;
  58. ctx->state[0] = 0x67452301;
  59. ctx->state[1] = 0xEFCDAB89;
  60. ctx->state[2] = 0x98BADCFE;
  61. ctx->state[3] = 0x10325476;
  62. ctx->state[4] = 0xC3D2E1F0;
  63. }
  64. void utils_sha1_process(iot_sha1_context *ctx, const unsigned char data[64])
  65. {
  66. uint32_t temp, W[16], A, B, C, D, E;
  67. GET_UINT32_BE( W[ 0], data, 0 );
  68. GET_UINT32_BE( W[ 1], data, 4 );
  69. GET_UINT32_BE( W[ 2], data, 8 );
  70. GET_UINT32_BE( W[ 3], data, 12 );
  71. GET_UINT32_BE( W[ 4], data, 16 );
  72. GET_UINT32_BE( W[ 5], data, 20 );
  73. GET_UINT32_BE( W[ 6], data, 24 );
  74. GET_UINT32_BE( W[ 7], data, 28 );
  75. GET_UINT32_BE( W[ 8], data, 32 );
  76. GET_UINT32_BE( W[ 9], data, 36 );
  77. GET_UINT32_BE( W[10], data, 40 );
  78. GET_UINT32_BE( W[11], data, 44 );
  79. GET_UINT32_BE( W[12], data, 48 );
  80. GET_UINT32_BE( W[13], data, 52 );
  81. GET_UINT32_BE( W[14], data, 56 );
  82. GET_UINT32_BE( W[15], data, 60 );
  83. #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
  84. #define R(t) \
  85. ( \
  86. temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
  87. W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \
  88. ( W[t & 0x0F] = S(temp,1) ) \
  89. )
  90. #define P(a,b,c,d,e,x) \
  91. { \
  92. e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
  93. }
  94. A = ctx->state[0];
  95. B = ctx->state[1];
  96. C = ctx->state[2];
  97. D = ctx->state[3];
  98. E = ctx->state[4];
  99. #define F(x,y,z) (z ^ (x & (y ^ z)))
  100. #define K 0x5A827999
  101. P( A, B, C, D, E, W[0] );
  102. P( E, A, B, C, D, W[1] );
  103. P( D, E, A, B, C, W[2] );
  104. P( C, D, E, A, B, W[3] );
  105. P( B, C, D, E, A, W[4] );
  106. P( A, B, C, D, E, W[5] );
  107. P( E, A, B, C, D, W[6] );
  108. P( D, E, A, B, C, W[7] );
  109. P( C, D, E, A, B, W[8] );
  110. P( B, C, D, E, A, W[9] );
  111. P( A, B, C, D, E, W[10] );
  112. P( E, A, B, C, D, W[11] );
  113. P( D, E, A, B, C, W[12] );
  114. P( C, D, E, A, B, W[13] );
  115. P( B, C, D, E, A, W[14] );
  116. P( A, B, C, D, E, W[15] );
  117. P( E, A, B, C, D, R(16) );
  118. P( D, E, A, B, C, R(17) );
  119. P( C, D, E, A, B, R(18) );
  120. P( B, C, D, E, A, R(19) );
  121. #undef K
  122. #undef F
  123. #define F(x,y,z) (x ^ y ^ z)
  124. #define K 0x6ED9EBA1
  125. P( A, B, C, D, E, R(20) );
  126. P( E, A, B, C, D, R(21) );
  127. P( D, E, A, B, C, R(22) );
  128. P( C, D, E, A, B, R(23) );
  129. P( B, C, D, E, A, R(24) );
  130. P( A, B, C, D, E, R(25) );
  131. P( E, A, B, C, D, R(26) );
  132. P( D, E, A, B, C, R(27) );
  133. P( C, D, E, A, B, R(28) );
  134. P( B, C, D, E, A, R(29) );
  135. P( A, B, C, D, E, R(30) );
  136. P( E, A, B, C, D, R(31) );
  137. P( D, E, A, B, C, R(32) );
  138. P( C, D, E, A, B, R(33) );
  139. P( B, C, D, E, A, R(34) );
  140. P( A, B, C, D, E, R(35) );
  141. P( E, A, B, C, D, R(36) );
  142. P( D, E, A, B, C, R(37) );
  143. P( C, D, E, A, B, R(38) );
  144. P( B, C, D, E, A, R(39) );
  145. #undef K
  146. #undef F
  147. #define F(x,y,z) ((x & y) | (z & (x | y)))
  148. #define K 0x8F1BBCDC
  149. P( A, B, C, D, E, R(40) );
  150. P( E, A, B, C, D, R(41) );
  151. P( D, E, A, B, C, R(42) );
  152. P( C, D, E, A, B, R(43) );
  153. P( B, C, D, E, A, R(44) );
  154. P( A, B, C, D, E, R(45) );
  155. P( E, A, B, C, D, R(46) );
  156. P( D, E, A, B, C, R(47) );
  157. P( C, D, E, A, B, R(48) );
  158. P( B, C, D, E, A, R(49) );
  159. P( A, B, C, D, E, R(50) );
  160. P( E, A, B, C, D, R(51) );
  161. P( D, E, A, B, C, R(52) );
  162. P( C, D, E, A, B, R(53) );
  163. P( B, C, D, E, A, R(54) );
  164. P( A, B, C, D, E, R(55) );
  165. P( E, A, B, C, D, R(56) );
  166. P( D, E, A, B, C, R(57) );
  167. P( C, D, E, A, B, R(58) );
  168. P( B, C, D, E, A, R(59) );
  169. #undef K
  170. #undef F
  171. #define F(x,y,z) (x ^ y ^ z)
  172. #define K 0xCA62C1D6
  173. P( A, B, C, D, E, R(60) );
  174. P( E, A, B, C, D, R(61) );
  175. P( D, E, A, B, C, R(62) );
  176. P( C, D, E, A, B, R(63) );
  177. P( B, C, D, E, A, R(64) );
  178. P( A, B, C, D, E, R(65) );
  179. P( E, A, B, C, D, R(66) );
  180. P( D, E, A, B, C, R(67) );
  181. P( C, D, E, A, B, R(68) );
  182. P( B, C, D, E, A, R(69) );
  183. P( A, B, C, D, E, R(70) );
  184. P( E, A, B, C, D, R(71) );
  185. P( D, E, A, B, C, R(72) );
  186. P( C, D, E, A, B, R(73) );
  187. P( B, C, D, E, A, R(74) );
  188. P( A, B, C, D, E, R(75) );
  189. P( E, A, B, C, D, R(76) );
  190. P( D, E, A, B, C, R(77) );
  191. P( C, D, E, A, B, R(78) );
  192. P( B, C, D, E, A, R(79) );
  193. #undef K
  194. #undef F
  195. ctx->state[0] += A;
  196. ctx->state[1] += B;
  197. ctx->state[2] += C;
  198. ctx->state[3] += D;
  199. ctx->state[4] += E;
  200. }
  201. /*
  202. * SHA-1 process buffer
  203. */
  204. void utils_sha1_update(iot_sha1_context *ctx, const unsigned char *input, uint32_t ilen)
  205. {
  206. uint32_t fill;
  207. uint32_t left;
  208. if( ilen == 0 )
  209. return;
  210. left = ctx->total[0] & 0x3F;
  211. fill = 64 - left;
  212. ctx->total[0] += (uint32_t) ilen;
  213. ctx->total[0] &= 0xFFFFFFFF;
  214. if( ctx->total[0] < (uint32_t) ilen )
  215. ctx->total[1]++;
  216. if( left && ilen >= fill )
  217. {
  218. memcpy( (void *) (ctx->buffer + left), input, fill );
  219. utils_sha1_process( ctx, ctx->buffer );
  220. input += fill;
  221. ilen -= fill;
  222. left = 0;
  223. }
  224. while( ilen >= 64 )
  225. {
  226. utils_sha1_process( ctx, input );
  227. input += 64;
  228. ilen -= 64;
  229. }
  230. if( ilen > 0 )
  231. memcpy( (void *) (ctx->buffer + left), input, ilen );
  232. }
  233. static const unsigned char sha1_padding[64] = {
  234. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  235. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  236. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  237. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  238. };
  239. /*
  240. * SHA-1 final digest
  241. */
  242. void utils_sha1_finish(iot_sha1_context *ctx, unsigned char output[20])
  243. {
  244. uint32_t last, padn;
  245. uint32_t high, low;
  246. unsigned char msglen[8];
  247. high = ( ctx->total[0] >> 29 )
  248. | ( ctx->total[1] << 3 );
  249. low = ( ctx->total[0] << 3 );
  250. PUT_UINT32_BE( high, msglen, 0 );
  251. PUT_UINT32_BE( low, msglen, 4 );
  252. last = ctx->total[0] & 0x3F;
  253. padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
  254. utils_sha1_update( ctx, sha1_padding, padn );
  255. utils_sha1_update( ctx, msglen, 8 );
  256. PUT_UINT32_BE( ctx->state[0], output, 0 );
  257. PUT_UINT32_BE( ctx->state[1], output, 4 );
  258. PUT_UINT32_BE( ctx->state[2], output, 8 );
  259. PUT_UINT32_BE( ctx->state[3], output, 12 );
  260. PUT_UINT32_BE( ctx->state[4], output, 16 );
  261. }
  262. /*
  263. * output = SHA-1( input buffer )
  264. */
  265. void utils_sha1(const unsigned char *input, uint32_t ilen, unsigned char output[20])
  266. {
  267. iot_sha1_context ctx;
  268. utils_sha1_init(&ctx);
  269. utils_sha1_starts(&ctx);
  270. utils_sha1_update(&ctx, input, ilen);
  271. utils_sha1_finish(&ctx, output);
  272. utils_sha1_free(&ctx);
  273. }
  274. static int8_t utils_hb2hex(uint8_t hb)
  275. {
  276. hb = hb & 0xF;
  277. return (int8_t)(hb < 10 ? '0' + hb : hb - 10 + 'a');
  278. }
  279. void utils_hmac_sha1(const char *msg, int msg_len, char *digest, const char *key, int key_len)
  280. {
  281. iot_sha1_context context;
  282. unsigned char k_ipad[SHA1_KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */
  283. unsigned char k_opad[SHA1_KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */
  284. unsigned char out[SHA1_DIGEST_SIZE];
  285. int i;
  286. if ((NULL == msg) || (NULL == digest) || (NULL == key)) {
  287. return;
  288. }
  289. if (key_len > SHA1_KEY_IOPAD_SIZE) {
  290. return;
  291. }
  292. /* start out by storing key in pads */
  293. memset(k_ipad, 0, sizeof(k_ipad));
  294. memset(k_opad, 0, sizeof(k_opad));
  295. memcpy(k_ipad, key, key_len);
  296. memcpy(k_opad, key, key_len);
  297. /* XOR key with ipad and opad values */
  298. for (i = 0; i < SHA1_KEY_IOPAD_SIZE; i++) {
  299. k_ipad[i] ^= 0x36;
  300. k_opad[i] ^= 0x5c;
  301. }
  302. /* perform inner SHA */
  303. utils_sha1_init(&context); /* init context for 1st pass */
  304. utils_sha1_starts(&context); /* setup context for 1st pass */
  305. utils_sha1_update(&context, k_ipad, SHA1_KEY_IOPAD_SIZE); /* start with inner pad */
  306. utils_sha1_update(&context, (unsigned char *) msg, msg_len); /* then text of datagram */
  307. utils_sha1_finish(&context, out); /* finish up 1st pass */
  308. /* perform outer SHA */
  309. utils_sha1_init(&context); /* init context for 2nd pass */
  310. utils_sha1_starts(&context); /* setup context for 2nd pass */
  311. utils_sha1_update(&context, k_opad, SHA1_KEY_IOPAD_SIZE); /* start with outer pad */
  312. utils_sha1_update(&context, out, SHA1_DIGEST_SIZE); /* then results of 1st hash */
  313. utils_sha1_finish(&context, out); /* finish up 2nd pass */
  314. for (i = 0; i < SHA1_DIGEST_SIZE; ++i) {
  315. digest[i * 2] = utils_hb2hex(out[i] >> 4);
  316. digest[i * 2 + 1] = utils_hb2hex(out[i]);
  317. }
  318. }
  319. void utils_hmac_sha1_hex(const char *msg, int msg_len, char *digest, const char *key, int key_len)
  320. {
  321. iot_sha1_context context;
  322. unsigned char k_ipad[SHA1_KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */
  323. unsigned char k_opad[SHA1_KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */
  324. unsigned char out[SHA1_DIGEST_SIZE];
  325. int i;
  326. if ((NULL == msg) || (NULL == digest) || (NULL == key)) {
  327. return;
  328. }
  329. if (key_len > SHA1_KEY_IOPAD_SIZE) {
  330. return;
  331. }
  332. /* start out by storing key in pads */
  333. memset(k_ipad, 0, sizeof(k_ipad));
  334. memset(k_opad, 0, sizeof(k_opad));
  335. memcpy(k_ipad, key, key_len);
  336. memcpy(k_opad, key, key_len);
  337. /* XOR key with ipad and opad values */
  338. for (i = 0; i < SHA1_KEY_IOPAD_SIZE; i++) {
  339. k_ipad[i] ^= 0x36;
  340. k_opad[i] ^= 0x5c;
  341. }
  342. /* perform inner SHA */
  343. utils_sha1_init(&context); /* init context for 1st pass */
  344. utils_sha1_starts(&context); /* setup context for 1st pass */
  345. utils_sha1_update(&context, k_ipad, SHA1_KEY_IOPAD_SIZE); /* start with inner pad */
  346. utils_sha1_update(&context, (unsigned char *) msg, msg_len); /* then text of datagram */
  347. utils_sha1_finish(&context, out); /* finish up 1st pass */
  348. /* perform outer SHA */
  349. utils_sha1_init(&context); /* init context for 2nd pass */
  350. utils_sha1_starts(&context); /* setup context for 2nd pass */
  351. utils_sha1_update(&context, k_opad, SHA1_KEY_IOPAD_SIZE); /* start with outer pad */
  352. utils_sha1_update(&context, out, SHA1_DIGEST_SIZE); /* then results of 1st hash */
  353. utils_sha1_finish(&context, out); /* finish up 2nd pass */
  354. memcpy(digest, out, SHA1_DIGEST_SIZE);
  355. }